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Abstract
The purpose of this Letter is to give the value of the q-multiple zeta function
at negative integers, which is an answer to a part of the problem in a previous
publication (Kim T, Park D-W and Rim S H 2001 J. Phys. A: Math. Gen. 34
7633).
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1. Introduction

Let p be a fixed prime, and let Cp denote the p-adic completion of the algebraic closure of
Qp. The p-adic absolute value in Cp is normalized so that |p|p = 1

p
. When one talks of

q-extension, q is variously considered as an indeterminate, a complex number q ∈ C or a
p-adic number q ∈ Cp. If q ∈ C, then we normally assume |q| < 1, and when q ∈ Cp, then

we normally assume |q − 1|p < p
− 1

p−1 , so that qx = exp (x log q) for |x|p � 1. We use the
notation

[x] = [x : q] = 1− qx

1− q
= 1 + q + q2 + · · · + qx−1.

In a recent paper (see [5]), we have considered the q-analogue of the multiple zeta function as
follows. For s ∈ C, q ∈ C with |q| < 1, define

ζ (h,k)
q (s) =

∞∑
a1,...,ak=0

qh(a1+···+ak)

[a1 + · · · + ak]s
+ (q − 1)

1− s + h

1− s

∞∑
a1,...,ak=0

qh(a1+···+ak)

[a1 + · · · + ak]s−1
(1)

where h, k are positive integers.
However, we could not find the analogues of Bernoulli numbers which ζ (h,k)

q (s) can be
viewed as interpolating at negative integers. This left this interpolation problem open, to find
the analogues of Bernoulli numbers which ζ (h,k)

q (s) can be viewed as interpolating at negative
integers (see [5]). This problem is of some interest in connection with speculations about the
new multiple zeta function associated with the quantization of a bosonic non-Archimedean-
valued field to be carried out in the functional integral formalism (cf [1–4]).
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In this Letter, we construct the analogues of Bernoulli numbers, which is an answer to a
part of the above problem (cf [5]).

2. On the analogues of Bernoulli numbers

In this section, we assume q ∈ Cp with |1− q|p < p
− 1

p−1 . For d a fixed positive integer with
(p, d) = 1, let

X = Xd = lim←−
N

Z/dpN Z X1 = Zp

X∗ =
⋃

0<a<dp
(a,p)=1

a + dp Zp

a + dpN Zp = {x ∈ X|x ≡ a (mod dpN)}
where a ∈ Z lies in 0 � a < dpN .

An invariant p-adic q-integral on Zp of a uniformly differentiable function f was defined
by ∫

Zp

f (x) dµq (x) = lim
N→∞

1

[pN ]

∑
0�j<pN

f (j)qj (cf [5–8]). (2)

For h, k ∈ N = {the set of natural numbers}, we consider the analogues of Bernoulli numbers
by making use of p-adic q-integrals as follows:

βm(h, k : q) =
∫

Zp

∫
Zp

· · ·
∫

Zp︸ ︷︷ ︸
k times

[x1 + x2 + · · · + xk]mq(h−1)
∑k

i=0 xi dµq (x1) · · · dµq (xk). (3)

Note that limq→1 β(1, 1 : q) = Bm, where Bm are the mth ordinary Bernoulli numbers (see [7]).

Theorem 1. For m � 0, h, k ∈ N, we have

βm(h, k : q) = 1

(1− q)m

m∑
j=0

(
m

j

)
(−1)j

(
j + h

[j + h]

)k

. (4)

Proof. We see(
1− q

1− qpN

)k pN−1∑
a1=0

· · ·
pN−1∑
ak=0

[a1 + · · · + ak]mqh(a1+···+ak)

=
(

1− q

1− qpN

)k 1

(1− q)m

pN−1∑
a1,···ak=0

m∑
j=0

(
m

j

)
(−1)j qj

∑k
i=1 ai qh

∑k
i=1 ai

= 1

(1− q)m

m∑
j=0

(
m

j

)
(−1)j

(
1− q

1− qpN

)k 1− q(j+h)pN

1− qj+h
· · · 1− q(j+h)pN

1− qj+h︸ ︷︷ ︸
k times

.

Since limn→∞ qpn = 1 for |1− q|p < 1, our assertion follows. �

Let G(h,k)(t) be the generating function of β(h, k : q) as follows:

G(h,k)(t) =
∞∑

n=0

βn(h, k : q)
tn

n!
. (5)
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Thus we have

G(h,k)(t) =
∞∑
l=0

(
1

(1− q)l

l∑
i=0

(
l

i

)
(−1)i

(
i + h

[i + h]

)k)
t l

l!

=
∞∑

j=0

(
j + h

[j + h]

)k
(−1)j

(1− q)j

tj

j !

∞∑
i=0

(
1

1− q

)i
t i

i!

= e
t

1−q

∞∑
j=0

(
j + h

[j + h]

)k
(−1)j

(1− q)j

tj

j !
. (6)

Note that

qhG(h,1)(qt)et − t = G(h,1)(t). (7)

By (5) and (7), we have

qh(qβ(h, 1 : q) + 1)m − βm(h, 1 : q) =
{

1 if m = 1

0 if m > 1
(8)

where we use the usual convention about replacing βi(h, 1 : q) by βi(h, 1 : q) (i � 0).

3. q-multiple zeta functions

In this section, we assume q ∈ C with |q| < 1. To give the analogues of Bernoulli numbers
which ζ (h,k)

q (s) can be viewed as interpolating at negative integers, we need to modify the
numbers βm(h, k : q) as follows:

Bm(h, k : q) = 1

(1− q)m+k−1

m∑
j=0

(
m

j

)
(−1)j

j + h

[j + h]k
. (9)

It is easy to see that βm(h, 1 : q) = Bm(h, 1 : q).
Let F (h,k)(t) be the generating function of Bm(h, k : q):

F (h,k)(t) =
∞∑

n=0

Bn(h, k : q)
tn

n!
.

By the same method as (6), we easily see

F (h,k)(t) = 1

(1− q)k−1

( ∞∑
i=0

i + h

[i + h]k

(
1

q − 1

)i
t i

i!

)
e

t
1−q . (10)

Thus we have

F (h,k)(t) =
∞∑

m=0

(
1

(1− q)m+k−1

m∑
j=0

(
m

j

)
(−1)j

j + h

[j + h]k

)
tm

m!

=
∞∑

m=0

(
−m

∞∑
a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m−1

−(q − 1)(m + h)

∞∑
a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m)
tm

m!
(11)

where
[ ∑k

i=1 ai

]m = [a1 + a2 + · · · + ak]m.
Differentiating both sides with respect to t in (11) and comparing coefficients, we obtain

the following:
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Theorem 2. For m � 0, h, k ∈ N, we have

Bm(h, k : q) = −m

∞∑
a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m−1

− (q − 1)(m + h)

×
∞∑

a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m

that is

−Bm(h, k : q)

m
=

∞∑
a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m−1

+ (q − 1)
(m + h)

m

×
∞∑

a1,...,ak=0

qh
∑k

i=1 ai

[ k∑
i=1

ai

]m

.

By theorem 2, note that

ζ (h,k)
q (1−m) = −Bm(h, k : q)

m
for m � 1

which is an answer to a part of the problem in [5].
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