A note on q-multiple zeta functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 L643
(http://iopscience.iop.org/0305-4470/34/46/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A note on q-multiple zeta functions

Taekyun Kim

Institute of Science Education, Kongju National University, Kongju 314-701, Korea
E-mail: tkim@kongju.ac.kr and taekyun64@hanmail.net
Received 12 September 2001
Published 9 November 2001
Online at stacks.iop.org/JPhysA/34/L643

Abstract

The purpose of this Letter is to give the value of the q-multiple zeta function at negative integers, which is an answer to a part of the problem in a previous publication (Kim T, Park D-W and Rim S H 2001 J. Phys. A: Math. Gen. 34 7633).

PACS number: 02.30.Gp
Mathematics Subject Classification: 11S80

1. Introduction

Let p be a fixed prime, and let \mathbb{C}_{p} denote the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. The p-adic absolute value in \mathbb{C}_{p} is normalized so that $|p|_{p}=\frac{1}{p}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, then we normally assume $|q|<1$, and when $q \in \mathbb{C}_{p}$, then we normally assume $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leqslant 1$. We use the notation

$$
[x]=[x: q]=\frac{1-q^{x}}{1-q}=1+q+q^{2}+\cdots+q^{x-1}
$$

In a recent paper (see [5]), we have considered the q-analogue of the multiple zeta function as follows. For $s \in \mathbb{C}, q \in \mathbb{C}$ with $|q|<1$, define
$\zeta_{q}^{(h, k)}(s)=\sum_{a_{1}, \ldots, a_{k}=0}^{\infty} \frac{q^{h\left(a_{1}+\cdots+a_{k}\right)}}{\left[a_{1}+\cdots+a_{k}\right]^{s}}+(q-1) \frac{1-s+h}{1-s} \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} \frac{q^{h\left(a_{1}+\cdots+a_{k}\right)}}{\left[a_{1}+\cdots+a_{k}\right]^{s-1}}$
where h, k are positive integers.
However, we could not find the analogues of Bernoulli numbers which $\zeta_{q}^{(h, k)}(s)$ can be viewed as interpolating at negative integers. This left this interpolation problem open, to find the analogues of Bernoulli numbers which $\zeta_{q}^{(h, k)}(s)$ can be viewed as interpolating at negative integers (see [5]). This problem is of some interest in connection with speculations about the new multiple zeta function associated with the quantization of a bosonic non-Archimedeanvalued field to be carried out in the functional integral formalism (cf [1-4]).

In this Letter, we construct the analogues of Bernoulli numbers, which is an answer to a part of the above problem (cf [5]).

2. On the analogues of Bernoulli numbers

In this section, we assume $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<p^{-\frac{1}{p-1}}$. For d a fixed positive integer with $(p, d)=1$, let

$$
\begin{aligned}
& X=X_{d}=\lim _{\overleftarrow{N}} \mathbb{Z} / d p^{N} \mathbb{Z} \quad X_{1}=\mathbb{Z}_{p} \\
& X^{*}=\bigcup_{\substack{0<a<d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p} \\
& a+d p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a \quad\left(\bmod d p^{N}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{Z}$ lies in $0 \leqslant a<d p^{N}$.
An invariant p-adic q-integral on \mathbb{Z}_{p} of a uniformly differentiable function f was defined by

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]} \sum_{0 \leqslant j<p^{N}} f(j) q^{j} \quad(\operatorname{cf}[5-8]) . \tag{2}
\end{equation*}
$$

For $h, k \in \mathbb{N}=\{$ the set of natural numbers $\}$, we consider the analogues of Bernoulli numbers by making use of p-adic q-integrals as follows:
$\beta_{m}(h, k: q)=\underbrace{\int_{\mathbb{Z}_{p}} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{k \text { times }}\left[x_{1}+x_{2}+\cdots+x_{k}\right]^{m} q^{(h-1) \sum_{i=0}^{k} x_{i}} \mathrm{~d} \mu_{q}\left(x_{1}\right) \cdots \mathrm{d} \mu_{q}\left(x_{k}\right)$.
Note that $\lim _{q \rightarrow 1} \beta(1,1: q)=B_{m}$, where B_{m} are the m th ordinary Bernoulli numbers (see [7]).
Theorem 1. For $m \geqslant 0, h, k \in \mathbb{N}$, we have

$$
\begin{equation*}
\beta_{m}(h, k: q)=\frac{1}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j}\left(\frac{j+h}{[j+h]}\right)^{k} \tag{4}
\end{equation*}
$$

Proof. We see

$$
\begin{aligned}
\left(\frac{1-q}{1-q^{p^{N}}}\right)^{k} & \sum_{a_{1}=0}^{p^{N}-1} \cdots \sum_{a_{k}=0}^{p^{N}-1}\left[a_{1}+\cdots+a_{k}\right]^{m} q^{h\left(a_{1}+\cdots+a_{k}\right)} \\
& =\left(\frac{1-q}{1-q^{p^{N}}}\right)^{k} \frac{1}{(1-q)^{m}} \sum_{a_{1}, \cdots a_{k}=0}^{p^{N}-1} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} q^{j \sum_{i=1}^{k} a_{i}} q^{h \sum_{i=1}^{k} a_{i}} \\
& =\frac{1}{(1-q)^{m}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j}\left(\frac{1-q}{1-q^{p^{N}}}\right)^{k} \underbrace{\frac{1-q^{(j+h) p^{N}}}{1-q^{j+h}} \cdots \frac{1-q^{(j+h) p^{N}}}{1-q^{j+h}}}_{k \text { times }} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} q^{p^{n}}=1$ for $|1-q|_{p}<1$, our assertion follows.
Let $G^{(h, k)}(t)$ be the generating function of $\beta(h, k: q)$ as follows:

$$
\begin{equation*}
G^{(h, k)}(t)=\sum_{n=0}^{\infty} \beta_{n}(h, k: q) \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
G^{(h, k)}(t) & =\sum_{l=0}^{\infty}\left(\frac{1}{(1-q)^{l}} \sum_{i=0}^{l}\binom{l}{i}(-1)^{i}\left(\frac{i+h}{[i+h]}\right)^{k}\right) \frac{t^{l}}{l!} \\
& =\sum_{j=0}^{\infty}\left(\frac{j+h}{[j+h]}\right)^{k} \frac{(-1)^{j}}{(1-q)^{j}} \frac{t^{j}}{j!} \sum_{i=0}^{\infty}\left(\frac{1}{1-q}\right)^{i} \frac{t^{i}}{i!} \\
& =\mathrm{e}^{\frac{t}{1-q}} \sum_{j=0}^{\infty}\left(\frac{j+h}{[j+h]}\right)^{k} \frac{(-1)^{j}}{(1-q)^{j}} \frac{t^{j}}{j!} \tag{6}
\end{align*}
$$

Note that

$$
\begin{equation*}
q^{h} G^{(h, 1)}(q t) \mathrm{e}^{t}-t=G^{(h, 1)}(t) \tag{7}
\end{equation*}
$$

By (5) and (7), we have

$$
q^{h}(q \beta(h, 1: q)+1)^{m}-\beta_{m}(h, 1: q)= \begin{cases}1 & \text { if } \quad m=1 \tag{8}\\ 0 & \text { if } \quad m>1\end{cases}
$$

where we use the usual convention about replacing $\beta^{i}(h, 1: q)$ by $\beta_{i}(h, 1: q)(i \geqslant 0)$.

3. q-multiple zeta functions

In this section, we assume $q \in \mathbb{C}$ with $|q|<1$. To give the analogues of Bernoulli numbers which $\zeta_{q}^{(h, k)}(s)$ can be viewed as interpolating at negative integers, we need to modify the numbers $\beta_{m}(h, k: q)$ as follows:

$$
\begin{equation*}
B_{m}(h, k: q)=\frac{1}{(1-q)^{m+k-1}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{j+h}{[j+h]^{k}} . \tag{9}
\end{equation*}
$$

It is easy to see that $\beta_{m}(h, 1: q)=B_{m}(h, 1: q)$.
Let $F^{(h, k)}(t)$ be the generating function of $B_{m}(h, k: q)$:

$$
F^{(h, k)}(t)=\sum_{n=0}^{\infty} B_{n}(h, k: q) \frac{t^{n}}{n!} .
$$

By the same method as (6), we easily see

$$
\begin{equation*}
F^{(h, k)}(t)=\frac{1}{(1-q)^{k-1}}\left(\sum_{i=0}^{\infty} \frac{i+h}{[i+h]^{k}}\left(\frac{1}{q-1}\right)^{i} \frac{t^{i}}{i!}\right) \mathrm{e}^{\frac{t}{1-q}} . \tag{10}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
F^{(h, k)}(t)= & \sum_{m=0}^{\infty}\left(\frac{1}{(1-q)^{m+k-1}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \frac{j+h}{[j+h]^{k}}\right) \frac{t^{m}}{m!} \\
= & \sum_{m=0}^{\infty}\left(-m \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m-1}\right. \\
& \left.-(q-1)(m+h) \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m}\right) \frac{t^{m}}{m!} \tag{11}
\end{align*}
$$

where $\left[\sum_{i=1}^{k} a_{i}\right]^{m}=\left[a_{1}+a_{2}+\cdots+a_{k}\right]^{m}$.
Differentiating both sides with respect to t in (11) and comparing coefficients, we obtain the following:

Theorem 2. For $m \geqslant 0, h, k \in \mathbb{N}$, we have

$$
\begin{aligned}
B_{m}(h, k: q)= & -m \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m-1}-(q-1)(m+h) \\
& \times \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m}
\end{aligned}
$$

that is

$$
\begin{aligned}
-\frac{B_{m}(h, k: q)}{m} & =\sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m-1}+(q-1) \frac{(m+h)}{m} \\
& \times \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} q^{h \sum_{i=1}^{k} a_{i}}\left[\sum_{i=1}^{k} a_{i}\right]^{m} .
\end{aligned}
$$

By theorem 2, note that

$$
\zeta_{q}^{(h, k)}(1-m)=-\frac{B_{m}(h, k: q)}{m} \quad \text { for } \quad m \geqslant 1
$$

which is an answer to a part of the problem in [5].
This work was supported by a Korean Research Foundation grant (KRF-99-005-D00026).

References

[1] Albeverio S, Bayod J M, Perez-Garcia C, Cianci R and Khrennikov A Yu 1999 Acta Appl. Math. 57205
[2] Dubischar D, Gundlach V M, Steinkamp O and Khrennikov A Yu 1999 Nuovo Cimento B 114373
[3] Khrennikov A Yu 1994 p-adic Valued Distributions in Mathematical Physics (Dordrecht: Kluwer)
[4] Khrennikov A Yu 1997 Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Dordrecht: Kluwer)
[5] Kim T, Park D-W and Rim S H 2001 J. Phys. A: Math. Gen. 347633
[6] Kim T 1998 Multiple zeta values, di-zeta values and their applications Lecture Notes in Number Theory (Kyungnam University) (Gu-Duk)
[7] Kim T and Rim S H 2001 Notes on Number Theory and Discrete Math. vol 7 (Sofia: Academic)
[8] Murphy G J 2001 Advanced Studies in Contemporary Mathematics vol 3 (Pusan: Ku-Deok) p 31

